叢磊,白山合伙人兼工程副總裁。
叢磊先生2016年加入白山,主要負(fù)責(zé)云聚合產(chǎn)品的研發(fā)管理和云鏈產(chǎn)品體系構(gòu)建等。
叢磊2006年至2015年就職于新浪,原SAE(SinaAppEngine)創(chuàng)始人,曾任總負(fù)責(zé)人兼首席架構(gòu)師,2010年起,帶領(lǐng)新浪云計(jì)算團(tuán)隊(duì)從事云相關(guān)領(lǐng)域的技術(shù)研發(fā)工作。(注:SAE是國(guó)內(nèi)最大的公有云PaaS平臺(tái),擁有70萬用戶。)
叢磊擁有10項(xiàng)發(fā)明專利,現(xiàn)任工信部可信云服務(wù)認(rèn)證評(píng)委。
云給安全帶來的影響
距離2006年Amazon發(fā)布EC2服務(wù)已經(jīng)過去了11年,在這11年里,發(fā)生的不僅僅是AWS收入從幾十萬美金上漲到100多億美金,更重要的是云計(jì)算已經(jīng)走進(jìn)每一家企業(yè)。根據(jù)信通院發(fā)布的“2016云計(jì)算白皮書”,目前近90%的企業(yè)都已經(jīng)開始使用云計(jì)算(包括公有云、私有云等),這說明大規(guī)模云化對(duì)于企業(yè)而言已經(jīng)不只是趨勢(shì),更是確鑿的既成事實(shí)。
云化普及的同時(shí)也給安全帶來很多挑戰(zhàn),主要包括:
云化導(dǎo)致以硬件設(shè)備為主的傳統(tǒng)安全方式失效。我在跟企業(yè)交流時(shí),不止一家企業(yè)提出了這樣的擔(dān)心:在上公有云的過程中,因?yàn)闊o法把已購(gòu)買的硬件防護(hù)搬到云上,所以非常擔(dān)心業(yè)務(wù)安全性。有趣的是,他們對(duì)于上云后的流量層攻擊反倒不擔(dān)心,因?yàn)樗麄冋J(rèn)為云上的高防IP等產(chǎn)品可以解決大部分問題。云化導(dǎo)致了業(yè)務(wù)層的安全空白,這不僅發(fā)生在公有云環(huán)境,在私有云環(huán)境也時(shí)有發(fā)生,以O(shè)penStack Icehouse版本為例,至今仍缺少能夠有效橫向擴(kuò)展的Web安全組件。
云化導(dǎo)致攻擊/作惡成本大大降低。云是IT領(lǐng)域里“共享經(jīng)濟(jì)”的再升級(jí),從最早的IDC租用升級(jí)進(jìn)化到Linux kernel namespace租用,但這種“共享經(jīng)濟(jì)”在給企業(yè)帶來成本降低、使用便利等益處的同時(shí),也順便給攻擊者帶來了同樣的好處。按目前市場(chǎng)行情,攻擊者租用一個(gè)公網(wǎng)彈性IP的成本可低至1元/天,租用一個(gè)IaaS平臺(tái)的hypervisor層的計(jì)算環(huán)境,每日成本也只有幾元,如果是container層的計(jì)算環(huán)境,成本還要更低。如此低的成本,致使攻擊者不再像過去那樣花大力氣挖掘培養(yǎng)肉機(jī),而是可以在瞬間輕松擁有用于攻擊的計(jì)算網(wǎng)絡(luò)資源。以白山服務(wù)的某著名互聯(lián)網(wǎng)招聘領(lǐng)域客戶為例,攻擊者最多可以在一天內(nèi)動(dòng)用上萬個(gè)IP以極低的頻率爬取核心用戶簡(jiǎn)歷。
云化導(dǎo)致業(yè)務(wù)可控性降低,遭遇攻擊的風(fēng)險(xiǎn)大大提高。實(shí)際上云客觀造成了業(yè)務(wù)的復(fù)雜性和不可控性:大量自身或合作方的業(yè)務(wù)都跑在同一個(gè)云上,其中任何一個(gè)業(yè)務(wù)被攻擊,都有可能對(duì)其他部分造成影響。不可否認(rèn),現(xiàn)有的hypervisor隔離技術(shù)很成熟,以CPU為例,通過計(jì)算時(shí)間片分配進(jìn)而在執(zhí)行指令間插入各種自旋鎖可以精確控制執(zhí)行體的CPU分配,其他資源包括內(nèi)存、IO也都可以恰當(dāng)?shù)目刂?。但在所有資源里,隔離性最脆弱的就是網(wǎng)絡(luò),尤其是公網(wǎng),畢竟NAT出口、域名等很難被隔離。
所以,我們不得不面對(duì)這樣的現(xiàn)實(shí):在享受云計(jì)算時(shí)代紅利的同時(shí),面臨的業(yè)務(wù)層安全問題也越來越嚴(yán)重。
安全產(chǎn)品需要變革
遺憾的是,很多傳統(tǒng)安全產(chǎn)品并沒有跟上這個(gè)時(shí)代。最明顯的例子,15年前的防火墻就依靠著在命令行設(shè)定各種各樣的policy工作;而15年后的今天,一切的變化只是由命令行設(shè)定policy變成了界面設(shè)置policy,這不得不說是一種悲哀!
對(duì)于傳統(tǒng)安全產(chǎn)品,設(shè)定policy是一種痛苦
我曾經(jīng)聽某著名安全廠商的布道師演講,“買了我們的產(chǎn)品不代表你的業(yè)務(wù)就安全了,你必須學(xué)會(huì)怎么配置!”,這話聽起來有道理,但遺憾的是,大多數(shù)公司的安全人員并不是公司的業(yè)務(wù)開發(fā)者,他們不知道業(yè)務(wù)頁(yè)面應(yīng)該從哪個(gè)referer過來、不應(yīng)該接受哪個(gè)user-agent的請(qǐng)求,也不知道某個(gè)接口應(yīng)該接受哪些參數(shù),甚至不知道業(yè)務(wù)對(duì)于單個(gè)用戶的合理訪問頻率區(qū)間。更遺憾的是,這些傳統(tǒng)安全產(chǎn)品價(jià)值不菲,在你花了上百萬銀子后,很可能毫無作用,而最悲哀之處在于“你以為它在起作用!”
傳統(tǒng)的安全產(chǎn)品因?yàn)楸仨氁拥綐I(yè)務(wù)中間,這帶來了極大的不穩(wěn)定性。雖然某些先進(jìn)的硬件機(jī)制可以通過技術(shù)降低這個(gè)風(fēng)險(xiǎn),但仍不可避免的是:串接會(huì)帶來性能延遲+帶寬瓶頸。有些企業(yè)一開始購(gòu)買了100Mbps吞吐量的硬件安全產(chǎn)品,但當(dāng)業(yè)務(wù)突增時(shí),硬件卻無法自由橫向擴(kuò)容。更麻煩的是,串行模式一旦分析的維度變得復(fù)雜(如策略變多時(shí)),就注定會(huì)造成業(yè)務(wù)的訪問延遲;而分析維度一旦少,如退化為只做固定時(shí)間內(nèi)訪問頻率限制,又會(huì)造成識(shí)別錯(cuò)誤率上升。這是傳統(tǒng)安全產(chǎn)品無法解決的永恒矛盾體。
不幸的是,雖然傳統(tǒng)安全產(chǎn)品存在諸多問題,但很多用戶仍在默默忍受,甚至習(xí)慣了每天配置策略的工作。但這并不意味著合理。
在不便中,一直蘊(yùn)藏著技術(shù)革新的機(jī)會(huì)!這時(shí),機(jī)器學(xué)習(xí)來了!
機(jī)器學(xué)習(xí)是解決安全問題的金鑰匙
機(jī)器學(xué)習(xí)發(fā)展史
機(jī)器學(xué)習(xí)其實(shí)早已到來。由上圖中可以看出,目前大紅大紫的深度學(xué)習(xí),其源頭-神經(jīng)網(wǎng)絡(luò),早在上世紀(jì)70年代就已經(jīng)被提出。從上世紀(jì)80年代到本世紀(jì),機(jī)器學(xué)習(xí)本身經(jīng)歷了幾次平淡期和爆發(fā)期,隨著大數(shù)據(jù)的發(fā)展和一些熱點(diǎn)事件(如AlphaGo戰(zhàn)勝李世石)機(jī)器學(xué)習(xí)又一次進(jìn)入爆發(fā)期。
那么大數(shù)據(jù)和機(jī)器學(xué)習(xí)具有什么關(guān)系呢?這還要和深度學(xué)習(xí)掛鉤,從理論上講,深度學(xué)習(xí)本質(zhì)上是利用多層的神經(jīng)網(wǎng)絡(luò)計(jì)算,代替?zhèn)鹘y(tǒng)特征工程的特征選取,從而達(dá)到媲美甚至超越傳統(tǒng)特征工程進(jìn)行分類算法的效果?;谶@個(gè)邏輯,當(dāng)標(biāo)注樣本足夠多時(shí)(即所謂“大數(shù)據(jù)”),通過深度學(xué)習(xí)就可以構(gòu)造出非常強(qiáng)大的分類器,如判斷一個(gè)圍棋的棋局對(duì)哪方有利。
AI隨著目前深度學(xué)習(xí)的火爆看似非常強(qiáng)大,但不幸的是,坦白講目前AI的發(fā)展成熟度遠(yuǎn)沒有達(dá)到可以取代人腦抑或接近人腦的水平。根據(jù)圖靈測(cè)試?yán)碚摚珹I本身要解決的問題無外乎:識(shí)別、理解、反饋。
這三個(gè)問題逐步遞進(jìn),真正智能的機(jī)器人最終可以跟人腦一樣反饋,從而在圖靈測(cè)試中無法區(qū)分它是人還是機(jī)器。
按當(dāng)前AI發(fā)展情況,“識(shí)別”的進(jìn)展目前效果最好,無論是圖像、語音還是視頻,目前很多廠商都可以做到很高的識(shí)別率;但“理解”就差強(qiáng)人意了,大家都用過蘋果的Siri,它還未能達(dá)到與人真正對(duì)話的程度;而反饋就更難了,這要求在理解的基礎(chǔ)上不斷地應(yīng)變,同一個(gè)問題可能因?qū)Ψ缴矸?、心情、交流?chǎng)合不同,以不同的語氣語調(diào)做出不同反應(yīng)。
所以,目前應(yīng)用機(jī)器學(xué)習(xí)效果非常好的領(lǐng)域,幾乎都是某個(gè)特定領(lǐng)域內(nèi)的識(shí)別問題,并非通用領(lǐng)域,如人臉識(shí)別、人機(jī)對(duì)弈(人機(jī)對(duì)弈本質(zhì)上也是某個(gè)棋種領(lǐng)域的識(shí)別問題:機(jī)器通過學(xué)習(xí)成千上萬的棋局后,就可以自動(dòng)識(shí)別某一棋局在一方走的情況下對(duì)誰有利。)
非常幸運(yùn)的是,安全領(lǐng)域中問題大多是特定場(chǎng)景下的識(shí)別問題,而非通用場(chǎng)景,也并未涉及理解和反饋,你只需要把相關(guān)數(shù)據(jù)交給機(jī)器學(xué)習(xí)系統(tǒng),讓它做出識(shí)別判斷即可:安全或者不安全,不安全的原因。
正因?yàn)榘踩珕栴}本質(zhì)是特定領(lǐng)域內(nèi)的識(shí)別問題,所以從理論上講,機(jī)器學(xué)習(xí)非常適合應(yīng)用在安全領(lǐng)域,是解決安全問題的金鑰匙。
安全結(jié)合機(jī)器學(xué)習(xí)的難點(diǎn)
雖然機(jī)器學(xué)習(xí)早已存在,但是長(zhǎng)久以來并未改變安全市場(chǎng),以“土辦法(設(shè)定策略)”立足的產(chǎn)品仍舊占據(jù)主導(dǎo)地位,究其原因,主要有以下幾點(diǎn):
1、不同于其他通用領(lǐng)域,安全領(lǐng)域的樣本標(biāo)注成本較高。對(duì)于機(jī)器學(xué)習(xí)而言,擁有海量、完整、客觀、準(zhǔn)確的標(biāo)注樣本異常重要,標(biāo)注樣本越多、越全面,訓(xùn)練出來的分類器才可能越準(zhǔn)確。對(duì)于所有行業(yè)來講,獲取樣本(標(biāo)注樣本)都并不容易,而安全領(lǐng)域尤為困難。如對(duì)人臉識(shí)別的標(biāo)注,初中生甚至小學(xué)生就可以完成,但對(duì)于一次安全的威脅事件,就需要極具經(jīng)驗(yàn)的安全人員才可以完成,兩者的成本差距十分巨大。
某個(gè)注入攻擊
如上圖所示,這個(gè)注入攻擊經(jīng)多次復(fù)雜編碼,非專業(yè)人事很難進(jìn)行樣本標(biāo)注。所以目前在通用場(chǎng)景下,之所以安全領(lǐng)域中深度學(xué)習(xí)落地并不多,主要原因也是很難獲取海量的標(biāo)注數(shù)據(jù)。
2、不同于通用領(lǐng)域,安全領(lǐng)域的場(chǎng)景特點(diǎn)更加明顯,判斷攻擊的標(biāo)準(zhǔn)會(huì)隨著業(yè)務(wù)特點(diǎn)的不同而不同。以最簡(jiǎn)單的CC攻擊為例,600次/ 分鐘的訪問對(duì)于某些企業(yè)可能意味著破壞性攻擊,但對(duì)其它企業(yè)則屬于正常訪問范圍。所以,即便有大量的標(biāo)注樣本,某一企業(yè)的標(biāo)注樣本可能對(duì)于其他企業(yè)毫無用處,這也是導(dǎo)致安全領(lǐng)域應(yīng)用機(jī)器學(xué)習(xí)較為困難的另一個(gè)重要原因。
3、針對(duì)傳統(tǒng)的文本型攻擊,傳統(tǒng)思維認(rèn)為簡(jiǎn)單的特征工程,甚至直接的正則匹配更有效。
我們把Web攻擊分為行為型攻擊和文本型攻擊兩類:
- 行為型攻擊:每個(gè)請(qǐng)求看起來都是正常的,但將其連接成請(qǐng)求走勢(shì)圖時(shí),就會(huì)發(fā)現(xiàn)問題,如爬蟲、撞庫(kù)、刷單、薅羊毛等。以刷粉行為為例:每個(gè)請(qǐng)求看起來都是正常的,但攻擊者可能動(dòng)用大量IP在短時(shí)間內(nèi)注冊(cè)大量賬號(hào),并關(guān)注同一個(gè)用戶。只有我們把這些行為連接起來一起分析時(shí),才能發(fā)現(xiàn)問題。
- 文本型攻擊:傳統(tǒng)的漏洞類攻擊,如SQL注入、命令注入、XSS攻擊等,單純的把一個(gè)請(qǐng)求看成是一段文本,通過文本的特征即可識(shí)別其是否為攻擊。
當(dāng)特征的維度空間較低,且有些維度的區(qū)分度很高時(shí),通過簡(jiǎn)單的線性分類器,就可以實(shí)現(xiàn)不錯(cuò)的準(zhǔn)確率,例如我們簡(jiǎn)單的制定一些SQL注入的正則規(guī)則,也可以適用于很多場(chǎng)景。但是,這樣的傳統(tǒng)思維卻忽略了召回率問題,實(shí)際上也很少有人知道,通過SQL注入的正則規(guī)則,可以達(dá)到多少的召回率。同時(shí),在某些場(chǎng)景,假如業(yè)務(wù)的正常接口通過JSON傳遞SQL語句,那么這種基于正則規(guī)則的分類器就會(huì)產(chǎn)生極高的誤判。
然而傳統(tǒng)安全廠商還尚未意識(shí)到這些問題。
4、傳統(tǒng)安全人員并不了解機(jī)器學(xué)習(xí)。這是一個(gè)不爭(zhēng)的事實(shí),大量傳統(tǒng)安全公司的安全人員精于構(gòu)造各種漏洞探測(cè)、挖掘各種邊界條件繞過,善于制定一個(gè)又一個(gè)的補(bǔ)丁策略,卻并不擅長(zhǎng)AI機(jī)器學(xué)習(xí)方面的內(nèi)容,這也說明了這種跨界人才的稀缺和重要。
正是由于以上原因,AI智能的安全產(chǎn)品遲遲沒有出現(xiàn),但沒人可以否認(rèn),用戶其實(shí)早已厭倦policy驅(qū)動(dòng)的規(guī)則模式,期待有一種可以適應(yīng)大多數(shù)場(chǎng)景、能夠針對(duì)行為或文本做深入分析、不需要復(fù)雜配置就可以達(dá)到高準(zhǔn)確率和召回率的Web安全產(chǎn)品。
于是,我們用AI重新定義Web安全,因?yàn)槲覀儓?jiān)信異常行為和正常行為可以通過特征識(shí)別被區(qū)分。
用AI重新定義Web安全
那如何解決安全領(lǐng)域的樣本標(biāo)注問題呢?機(jī)器學(xué)習(xí)分為兩大類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)要求有精準(zhǔn)的標(biāo)注樣本;而無監(jiān)督學(xué)習(xí)則無需標(biāo)注樣本,即可以針對(duì)特征空間進(jìn)行聚類計(jì)算。在標(biāo)注困難的安全領(lǐng)域,顯然無監(jiān)督學(xué)習(xí)是一把利器。
應(yīng)用無監(jiān)督學(xué)習(xí)
無監(jiān)督學(xué)習(xí)無需事先準(zhǔn)備大量標(biāo)注樣本,通過特征聚類就可以將正常用戶和異常用戶區(qū)分開,從而避免大量樣本標(biāo)注的難題。聚類的方式有很多,如距離聚類、密度聚類等,但其核心仍是計(jì)算兩個(gè)特征向量的距離。在Web安全領(lǐng)域,我們獲得的數(shù)據(jù)往往是用戶的HTTP流量或 HTTP日志,在做距離計(jì)算時(shí),可能會(huì)遇到一個(gè)問題:每個(gè)維度的計(jì)算粒度不一樣,如兩個(gè)用戶的向量空間里HTTP 200返回碼比例的距離是兩個(gè)float值的計(jì)算,而request length的距離則是兩個(gè)int值的計(jì)算,這就涉及粒度統(tǒng)一歸一化的問題。在這方面有很多技巧,比如可以使用Mahalanobis距離來代替?zhèn)鹘y(tǒng)的歐式距離,Mahalanobis距離的本質(zhì)是通過標(biāo)準(zhǔn)差來約束數(shù)值,當(dāng)標(biāo)準(zhǔn)差大時(shí),說明樣本的隨機(jī)性大,則降低數(shù)值的權(quán)值,反之,當(dāng)標(biāo)準(zhǔn)差小的時(shí)候,說明樣本具有相當(dāng)?shù)囊?guī)律性,則提高數(shù)值的權(quán)值。
無監(jiān)督的聚類可以利用EM計(jì)算模型,可以把類別、簇?cái)?shù)或者輪廓系數(shù)(Silhouette Coefficient)看成EM計(jì)算模型中的隱變量,然后不斷迭代計(jì)算來逼近最佳結(jié)果。最終我們會(huì)發(fā)現(xiàn),正常用戶和異常聚成不同的簇,之后就可以進(jìn)行后續(xù)處理了。當(dāng)然,這只是理想情況,更多情況下是正常行為與異常行為分別聚成了很多簇,甚至還有一些簇混雜著正常和異常行為,那么這時(shí)就還需要額外技巧處理。
學(xué)習(xí)規(guī)律
無監(jiān)督聚類的前提是基于用戶的訪問行為構(gòu)建的向量空間,向量空間類似:
[key1:value1,key2:value2,key3:value3...]
這里就涉及兩個(gè)問題:“如何找到key”以及“如何確定value”。
找到合適的key本質(zhì)是特征選擇問題,如何從眾多的特征維度中,選擇最具有區(qū)分度和代表性的維度。為什么不像某些DeepLearning一樣,將所有特征一起計(jì)算?這主要是考慮到計(jì)算的復(fù)雜度。請(qǐng)注意:特征選擇并不等同于特征降維,我們常用的PCA主成分和SVD分解只是特征降維,本質(zhì)上DeepLearning的前幾層某種意義上也是一種特征降維。
特征選擇的方法可以根據(jù)實(shí)際情況進(jìn)行。實(shí)驗(yàn)表明在有正反標(biāo)注樣本的情況下,隨機(jī)森林是一個(gè)不錯(cuò)的選擇。如果標(biāo)注樣本較少或本身樣本有問題,也可以使用Pearson距離來挑選特征。
最終,用戶的訪問行為會(huì)變成一組特征,那特征的value如何確定?以最重要的特征——訪問頻率為例,多高的訪問頻率值得我們關(guān)注?這需要我們對(duì)于每個(gè)業(yè)務(wù)場(chǎng)景進(jìn)行學(xué)習(xí),才能確定這些key的value。
學(xué)習(xí)的規(guī)律主要包括兩大類:
1、行為規(guī)律:自動(dòng)找出路徑的關(guān)鍵點(diǎn),根據(jù)狀態(tài)轉(zhuǎn)移概率矩陣,基于PageRank的power method計(jì)算原理,網(wǎng)站路徑的狀態(tài)轉(zhuǎn)移矩陣的最大特征值代表的就是其關(guān)鍵路徑(關(guān)鍵匯聚點(diǎn)和關(guān)鍵發(fā)散點(diǎn)),然后順著關(guān)鍵點(diǎn),就可以學(xué)習(xí)到用戶的路徑訪問規(guī)律。
2、文本規(guī)律:對(duì)于API,可以學(xué)習(xí)出其輸入輸出規(guī)律,如輸入?yún)?shù)數(shù)量、每個(gè)參數(shù)的類型(字符串or數(shù)字or郵箱地址等)、參數(shù)長(zhǎng)度分布情況,任何一個(gè)維度都會(huì)被學(xué)習(xí)出其概率分布函數(shù),然后就可以根據(jù)該函數(shù)計(jì)算其在群體中的比例。即便是最不確定的隨機(jī)分布,利用切比雪夫理論也可以告訴我們這些值異常。例如:假如GET /login.php?username=中的username參數(shù),經(jīng)過統(tǒng)計(jì)計(jì)算得出平均長(zhǎng)度是10,標(biāo)準(zhǔn)差是2,如果有一個(gè)用戶輸入的username長(zhǎng)度是20,那么該用戶的輸入在整體里就屬于占比小于5%群體的小眾行為。
通過特征選擇和行為、文本規(guī)律學(xué)習(xí),我們就可以構(gòu)建出一套完整且準(zhǔn)確的特征空間將用戶的訪問向量化,進(jìn)而進(jìn)行無監(jiān)督學(xué)習(xí)。
讓系統(tǒng)越來越聰明
如果一個(gè)系統(tǒng)沒有人的參與,是無法變得越來越聰明的,強(qiáng)大如AlphaGo也需要在同人類高手對(duì)弈中不斷強(qiáng)化自己。在安全領(lǐng)域,雖然完全的樣本標(biāo)注不可能,但是我們可以利用半監(jiān)督學(xué)習(xí)的原理,挑選具有代表性的行為交給專業(yè)的安全人員判斷,經(jīng)過評(píng)定校正,整個(gè)系統(tǒng)會(huì)越發(fā)聰明。安全人員的校正可以與強(qiáng)化學(xué)習(xí)和集成學(xué)習(xí)結(jié)合實(shí)現(xiàn),對(duì)于算法判斷準(zhǔn)確的情況,可以加大參數(shù)權(quán)重,反之則可以適當(dāng)減少。
類似的想法出現(xiàn)于國(guó)際人工智能頂級(jí)會(huì)議CVPR 2016的最佳論文之一,“AI2: Training a big data machine to defend”,MIT的startup團(tuán)隊(duì),提出了基于半監(jiān)督學(xué)習(xí)的AI2系統(tǒng),可以在有限人工參與的情況下,讓安全系統(tǒng)更安全更智能。
重新定義Web安全
基于上述幾點(diǎn),我們基本可以勾勒出基于AI的Web安全的基本要素:
AI Web安全技術(shù)棧
從圖中可以看到,所有算法均包含在實(shí)時(shí)計(jì)算框架內(nèi)。實(shí)時(shí)計(jì)算框架要求數(shù)據(jù)流的輸入、計(jì)算、輸出都是實(shí)時(shí)的,這樣才可以保證在威脅事件發(fā)生時(shí)系統(tǒng)迅速做出反應(yīng)。但是,實(shí)時(shí)計(jì)算的要求也增加了很多挑戰(zhàn)和難點(diǎn),一些傳統(tǒng)離線模式下不是問題的問題,在實(shí)時(shí)計(jì)算下會(huì)突然變成難題。如最簡(jiǎn)單的中位數(shù)計(jì)算,要設(shè)計(jì)一套在實(shí)時(shí)流輸入的情況下同時(shí)還能保證準(zhǔn)確性的中位數(shù)算法并不容易,T-digest是一個(gè)不錯(cuò)的選擇,可以限定在O(K)的內(nèi)存使用空間。還有一些算法可以實(shí)現(xiàn)在O(1)內(nèi)存占用的情況下計(jì)算相對(duì)準(zhǔn)確的中位數(shù)。
綜上所述,我們可以看出利用AI實(shí)現(xiàn)Web安全是一個(gè)必然的趨勢(shì),它可以顛覆傳統(tǒng)基于policy配置模式的安全產(chǎn)品,實(shí)現(xiàn)準(zhǔn)確全面的威脅識(shí)別。但是,構(gòu)造基于AI的安全產(chǎn)品本身也是一個(gè)復(fù)雜的工程,它涉及特征工程、算法設(shè)計(jì)和驗(yàn)證,以及穩(wěn)定可靠的工程實(shí)現(xiàn)。
ATD深度威脅識(shí)別系統(tǒng)
白山一直在基于AI的Web安全方面探索,并于2017年7月正式推出ATD(Advanced Threat Detection,深度威脅識(shí)別)產(chǎn)品,可以準(zhǔn)確識(shí)別并攔截各種行為或者文本攻擊,包括爬蟲、惡意注冊(cè)、撞庫(kù)、刷單刷票、薅羊毛、各種注入攻擊腳本攻擊等,短短半年內(nèi)已經(jīng)積累了30余家大中型企業(yè)客戶。實(shí)踐證明,機(jī)器學(xué)習(xí)確實(shí)在Web安全方面收效頗佳,如:
- 國(guó)內(nèi)某Top3招聘網(wǎng)站,長(zhǎng)期以來一直被爬取簡(jiǎn)歷,這些惡意爬蟲非常智能,在User-agent、referer等字段上完全模擬正常用戶,并內(nèi)嵌PhantomJS,可以執(zhí)行Javascript腳本,使傳統(tǒng)的JS跳轉(zhuǎn)防御方式完全失效。這些爬蟲動(dòng)用大量彈性IP,以極低頻率抓取,據(jù)統(tǒng)計(jì),單個(gè)客戶端每天最低可以低至十次以下,傳統(tǒng)的安全產(chǎn)品對(duì)此完全喪失防御能力。而基于機(jī)器學(xué)習(xí)的 ATD則可以通過特征向量建模,準(zhǔn)確區(qū)分低頻爬蟲與正常用戶行為。經(jīng)驗(yàn)證,準(zhǔn)確率高達(dá)99.98%。
- 國(guó)內(nèi)某Top3直播平臺(tái),存在大量的惡意刷分刷排名情況,這種行為破壞了平臺(tái)的公平性,本質(zhì)上損害了平臺(tái)利益。作惡團(tuán)伙事先批量注冊(cè)大量小號(hào),在需要時(shí)沖排名。這些行為顯然傳統(tǒng)安全產(chǎn)品無能為力,某些新興安全產(chǎn)品雖然可以解決,但需要大量定制化規(guī)則,通用性較差。機(jī)器學(xué)習(xí)算法正好彌補(bǔ)了以上不足,通過行為分析可以計(jì)算出關(guān)鍵路徑和規(guī)律,然后利用子圖識(shí)別等算法分析出作惡團(tuán)伙,最終輸出ID賬號(hào)。經(jīng)用戶驗(yàn)證,ATD的準(zhǔn)確率高達(dá)99%以上,召回率比傳統(tǒng)安全產(chǎn)品提高10倍以上。
總之,基于AI的Web安全是新興的技術(shù)領(lǐng)域,雖然目前還處于發(fā)展期,但最終一定會(huì)取代以policy為驅(qū)動(dòng)的傳統(tǒng)安全產(chǎn)品,成為保證企業(yè)Web安全的基石。